OPTIMIZATION OF THE HEATING MODE IN THE
VULCANIZATION OF RUBBER PRODUCTS
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Optimality criteria are selected for the vulcanization process with external heating of the
rubber product. The variational isoperimetric problem is formulated here with appropriate
limits. The optimum in this sense heating mode is determined by numerical integration of
the Euler equation on a digital computer.

The manufacture of modern technical-grade rubber products such as, for example, automobile tires,
involves very stringent requirements concerning the heating modes during vulcanization, which, in the
final analysis, determine the quality and the cost of these products. We will be concerned here with the
problems of producing homogeneous vuleanites within a minimum process time, whichisespeciallyimportant
in the vulcanization of products with a large thermal mass.

The problem of heat conduction in an infinitely large plate with boundary conditions of the first kind
will be expressed in dimensionless form:
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The conversion level of a resion mix is determined on the basis of the "equivalent time" Fog accord-
ing to the equation
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We seek a relation iy = {, = ¢ so that, when Fo = Fok, the difference
J, = Fo (0, Fok)—Foe(%, Fok) (6)
be minimum under the conditions

Foe(-—;—, Fo* ) = A4,
M
¥ (Fo) > 1,
with the constant A determined by the minimum value of Fog at which the vulcanization level is still adequate,
with 3, denoting the temperature threshold determined on the basis of technological considerations.

The solution to the heat conduction problem (1)-(4) for ¥ = 5 = ¢ will then be [2]

(X, Fo) = 9 (Fo) + [1— v ()] Emni__l_) sin [ @n— 1) X]
n=l . -
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xexp {— [n(2n — 1)]* (Fo— Fo*)| ¢/ (Fo*) d Fo*. (8)
To the first approximation,
Fo
& (—;—, Fo) = exp (— n®Fo) [1 + nzj‘ ¥ (Fo*) exp (n®Fo*) dFo*]. 9)
%
We now introduce the function
Fo
@ (Fo) = gxp(Fo*) exp (2 Fo*) d Fo*, (10)
0
¢’ (Fo) = ¢ (Fo) exp (n?Fo). - (11)
Then functional {6) becomes
‘ Fok
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Thus, the problem has been reduced to finding the function ¢ (Fo) which will minimize functional (12)

Fo*
Jolol = ( F (Fo, ¢, 9'}dFo
0

under the conditions

Fok

5 G (Fo, 9)dFo = 4, (Ta)
0
¢’ (Fo) > ¥, exp (n*Fo),
¢ (0) =0, (13)
¢ (Fot) = g*. (14)
Condition (14) corresponds to the required temperature #(1/2, Fok).

Let us dwell on the limitation (7a). Without this limitation, a variational isoperimetric problem [3]
is formulated whose solution must be the extremal of the functional

Fok

J, [o] = j (F + AG)dFo (15)

0

under conditions (7), (13), and (14), Here A is a certain constant determined from condition (7).

The Euler equation for functional (15) is
_ E e 2F E 2
1 x exp [-—— exp (ﬂ 0) ]+ 1 exp [._ M]

(1 + n*g) RT, (1 + n’) (@)? RT@’
T {1 __ _Eexp(n®Fo) 29" [1 __ Eexp(n®Fo) ]} 0. (16)
RT w9’ n?p’ RT2¢'

We note the following.
Note 1. The necessary Legendre condition for a minimum of functional (15)
(F +1G),,.q,, >0

is satisfied at any values of Fo = 0:

exp [ﬂ%_ E exp (n*Fo) ] [ Eexp (a?Fo)

29" | >0,
RT¢’ RT, ]

RT, (@')*
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Fig. 1. Variation in the relative temperature at surface points
#(Fo) (1) and at the center of a plate 4 (1/2, Fo) (2), and the mini-
mizing function ¢ (Fo).

Fig. 2. Variation of function Fog(F0), in the optimum mode, at
surface points Fog(0, Fo) (1) and at the center of a plate Fog(1/2,
Fo) (2).

E/RT > 24 in accordance with condition (7), which, in fact, limits y(Fo) from above.

Note 2. The form of Eq, (16) (Euler) indicates that the expression inside the square brackets will
retain its sign at any value of F6 = 0. Consequently,

P’ (FO)>"—E—JT*21\E€‘L for 1—A<0 17
RT. 29 (Fo)
) .
and
Y (Fo) < »F@—Q—(Fiﬂ for 1—A>0. (18)
RT — 24 (Fo)
1}

Note 3. A preliminary analysis of the solution to the Euler equation, made with the aid of a digital
computer, indicates that only from a certain value Fo = Fo** on is condition (7a) violated at all values of
Fo > Fo**

In this case the solution fo the problem must be sought on the basis of the generalized Euler theorem
[4]. Condition (7a) can be represented in the form

@ (Fo) >0 (0 < Fo<<Fo*¥,

Vo (Th)
o (Fo) >~ [exp (s Fo) — exp (n*Fo**) |4 ¢ (Fo**) (Fo** < Fo < Fot).
Jirs

Point cpk now lies on the boundary of the permissible region of extremais. The boundary condition (14) is -
superseded accordingly. The corresponding constant in the solution to the Euler equation (16) and the cor-
responding value of Fo** can be found from the system of equations
¢ (Fo™*, ¢,) =1, exp (n2Fo**),

P (19)

@ (Fo™, ¢)) =~ [exp (n? Fo**) —exp (w*Fo* )| + ¢,
Thus, the solution will consist of extremal segments for 0 = Fo = Fo** and the boundary of the permissible
region defined by conditions (7b). The extremal intersects this boundary at point Fo**, and point qok lies
on this boundary. In specific cases Fo** = Fok or Fo** lies outside the [0, Fok] interval where functional
(15) is defined.

Note 4. Function ¢ (Fo), which minimizes functional (15) under conditions (7), (7b), {13), and (14),
maximizes the functional
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1
Jy= Foe(—2—, Fok)

under the conditions
Foe(0, Fot) = B

and (7b), (13), (14), by virtue of the equivalency of problems regarding B which corresponds to Fog(0, Fok)
in the functional problem.

The Euler equation (16) was integrated numericallﬁ on a digital computer by the Runge—Kutta method.
Function go(Fok) = qak was searched, with an error ¢ (Fo¥)—¢X¥ taken into account, for various values of A
and with condition (7) satisfied. The computations were made for the followmg boundary conditions and
values of physical parameters: ¢ (Fok) =15, Fok = 0.4925, ¢(1/2, Fo ) = 1.45, A =1.25, E/R, T, = 40,
Pg= 1. The optimum control for heating a plate, in the sense of the problem as formulated here, was
obtained with A = 1. Fog(0, Fok) = 2.443.

For comparison, in accordance with note 4, a near-optimum mode was selected with a constant tem—
perature ¢ = 1.466. The initial and the boundary conditions remain almost unchanged. With Fog(0, Fok )
= 2.443, the result was Fog(1/2, Fok) = 0.945, as compared with 1.250 in the optimum mode.

We note that the exact solution (8) to the heat conduction problem at X = 1/2 is approximated by ex-
pression (9) adequately enough with respect to the sought boundary conditions. This, the error in the
‘described example did not exceed 3% at temperature levels appropriate for the given problem.

NOTATION

dX, Fo) = TX, Fo)/To is the relative temperature at point X = x/I at the instant of time Fo = at/1%;

T is the temperature, °K;

Ty is the initial plate temperature;

X is the space coordinate;

T is the time coordinate;

l is the thickness;

a is the thermal diffusivity;

] is the relative temperature at the plate surface;

Fog = ate/1% is the dimensionless "equivalent time";

Te is the equivalent time.

E is the activation energy of the vulcanizing reaction;

R is the universal gas constant;

Te is the reference temperature (°K) at which processing for a length of time 7,
results in the same degree of vulcanizing as processing at temperature T for
the length of time 7.
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