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Optimality c r i t e r i a  are  se lec ted  for  the vulcanization p r o c e s s  with externa l  heating of the 
rubber product. The variational isoperimetric problem is formuiated here with appropriate 
limits. The optimum in this sense heating mode is determined by numerical integration of 
the Euler equation on a digital computer. 

The manufacture of modern  technica l -grade  rubber  products  such as, for  example,  automobile t i res ,  
involves ve ry  s tr ingent  r equ i remen t s  concerning the heating modes during vulcanization, which, in the 
final analysis ,  determine the quali ty and the cost  of these products .  We will be concerned here  with the 
p rob lems  of producing homogeneous wdcani tes  within a minimum p r o c e s s  t ime, wh ich i s e spec i a l l y impor t an t  
in the vulcanization of products  with a large thermal  mass .  

The prob lem of heat conduction in an infinitely large plate with boundary conditions of the f i r s t  kind 
will be expres sed  in dimensionless  form: 

0~ (X, Fo) 
0 Fo 

_ 0 ~  (X, Fo) (0 <~ X . ~  1, 0 ~ Fo .<  oo), (1) 
OX ~ 

O(X, 0) = 1 ( 0 < X <  1), (2) 

~, (0, Fo) = ~1 (Fo) (0 ~ Fo < oc), (3) 

~(I ,  F o ) = ~ ( F o )  (0~Fo<::  co). (4) 

The convers ion level of a res ion  mix is de te rmined  on the basis  of the "equivalent t ime" Fo e a cco rd -  
ing to the equation 

Fo 

Foe(X, Fo) ---- exp - ~ e  exp - -  RTo~ (X, Fo*) 
0 

We seek a re la t ion r = r ; ~ so that, when Fo -- Fo k, the ddfference 

do=Foe(O , F o k ) - - F o e ( + ,  Fo~/, (6) 

be minimum under the conditions 

F o e ( l ,  Vok ) =  A, 

(7) 
(Vo) > % 

with the constant A de termined  by the minimum value of Fo e at which the vulcanization level is still  adequate, 
with ~0 denoting the t empera tu re  threshold  de termined  on the basis  of technological considerat ions.  

The solution to the heat conduction p rob lem (1)-(4) for  r = ~2 = r will then be [2] 

~}(X, Fo)-~,(Fo) + [1-- ' r  ( 0 ) ]  ~(2n--  1) sin [n ( 2 n - -  l) X] 
t l~ l  
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FO m 

• exp {-- [~ (2n-- I)] 2 Fo}-  .f ~ ~ (2n4-- 1) sin [x~ ( 2 n "  l) X] 

• exp {-- [n (2n -- I)] 2 (Fo-- Fo*)} , '  (Fo*) d Fo*. 

To the first approximation, 
F o  

O( I ,  F o )=  exp(--n~eo)[1 + z~ff * (Fo*) exp (zSFo*) dFo*] �9 
0 

We now introduce the function 
F o  

(Fo) ---- .I r (Fo*) exp (~2 Fo*) d Fo*, 
0 

9' (Fo) = ~ (Fo) exp (z' Fo). 
Then functional (6) becomes 

Thus, 

Fo k 

0 

- -exp[  Eexp (n~F~ }dFo. 
RT o [1 + n'9 (Fo)] ] 

the problem has been reduced to finding the function (p (Fo) which will minimize functional (12) 
Fo k 

Jo [91 = .! F (Fo, 9, ~') d Fo 
0 

under the conditions 

(s) 

(9) 

(i0) 

( I I )  

(12) 

Fo k 

S G(Fo, 9)dFo=A, (Ta) 
0 

9" (Fo) > ~o exp (z s Fo), 

9 (0) = o, (13) 

9 (Fo~) = 9 k . (14) 

Condition (14) corresponds to the required temperature ,~(1/2, Fok). 

Let us dwell on the limitation (7a). Without this limitation, a variational isoperimetrie problem [3] 
is formulated whose solution must be the extremal of the functional 

Fo ~ 

Ji[9] = S (F-l- •G)dFo (15) 
0 

under conditions (7), (13), and (14). Here X is a certain constant determined from condition (7). 

The Euler equation for functional (15) is 

(I + ~ )~  RT o (1 + ~9) ( - ~  exp - RToc p" 

• {1 Eexp(~F~ 29" [I Eexp(rc2F~ .]}=0.  (16) 
RTog' ~x29 ' RTo2c p' 

We note the following. 

Note 1. The necessary Legendre condition for a minimum of functional (15) 
(F + ;~6)~,~, > 0  

is satisfied at any values of Fo --- 0: 

RT o (9') 4 RTo9' RTo 
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Fig. 1 Fig. 2 
Fig. I. Variation in the relative temperature at surface points 
r (i) and at the center of a plate 4(1/2, Fo) (2), and the mini- 
mizing function ~0 (Fo). 

Fig. 2. Variation of function Foe(Fo), in the optimum mode, at 
surface points FOe(0, Fo) (I) and at the center of a plate Foe(i/2, 
Fo) (2). 

E/RT 0 > 2~ in accordance with condition (7), which, in fact, limits r from above. 

Note 2. The form of Eq. (16) (Euler) indicates that the expression inside the square brackets w~ll 
re ta in  i ts  sign at  any value of Fo -> 0. Consequently,  

~ (Fo) 
4 '  (Fo) ~ s 

- 24  (Fo) 
RTo 

and 

for 1 - - ~ , < 0  

Note 3. 

4' (Fo) < E " ~  (Fo) for 1 - -  X ~ 0. 
- -  - -  24  (Fo) 
RTo 

A p r e l i m i n a r y  ana lys i s  of the solution to the Eu le r  equation, made with the aid of a digital 
computer ,  indicates  that only f r o m  a ce r ta in  value Fo = Fo** on is  condition (Ta) violated at  all  values  of 
Fo > Fo**. 

(17) 

(18) 

In this ease  the solution to the p r o b l e m  mus t  be sought on the bas i s  of the genera l i zed  Eu le r  t heo rem 
[4]. Condition (7a) can be r e p r e s e n t e d  in the f o r m  

r (Fo) > 0 (0 .~.. Fo < Fo**), 

q~ (Fo) ~ / ~  [exp (~2 Fo) - -  exp (~2 Fo**)] q- q) (Fo**) (Fo** < Fo ~ Fo k ). 
(Tb) 

Point  q)k now l ies  on the boundary of the p e r m i s s i b l e  region of e x t r e m a l s .  The boundary condition (14) is  
supe r seded  accordingly.  The co r respond ing  constant  in the solution to the Eu le r  equation (16) and the c o r -  
responding value of Fo** can be found f r o m  the s y s t e m  of equations 

~p' (Fo**, c~) = % exp (z~ ~ Fo**), 
(19) 

cp (Fo**, c~) = 4___q_0 [exp (re 2 Fo**) - -  exp (z~ ~ Fo ~ )] q- ~p~. 

Thus,  the solution will cons i s t  of e x t r e m a l  segments  for  0 -< Fo -< Fo** and the boundary of the p e r m i s s i b l e  
region defined by conditions (7b). The e x t r e m a l  i n t e r s e c t s  this boundary at  point  Fo**, and point ~ k  l ies  
on this boundary. In specif ic  c a se s  Fo** = Fo k or  Fo** l ies  outside the [0, Fo k] i n t e rva l  where functional 
(15) is  defined. 

Note 4. Function ~0(Fo), which min imizes  functional (15) under  conditions (7), (Tb), (13), and (14), 
m a x i m i z e s  the functional 
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J~ = Foe( 1 ,  Fo ~) 

under the conditions 

F%(0, Fo k ) = B 

and (7b), (13), (14), by vir tue of the equivalency of p rob lems  regarding B which cor responds  to Foe(0, Fo k) 
in the functional problem.  

The Eu le r  equation (16) was in tegra ted  numer ica l ly  on a digital computer  by the Runge--Kutta method. 
Function 9 (Fo  k) = go k was searched,  with an e r r o r  ga(Fok)--~ k taken into account, for  var ious  values of 
and with condition (7) satisfied. The computations were made for  the following boundary conditions and 
values  of p h y s i c a l p a r a m e t e r s :  9 (Fo  k) = 15, Fo k =  0.4925, go(l/2, Fo k) = L45,  A = 1.25, E /R ,  T o = 40, 
r = 1. The optimum control  for  heating a plate,  in the sense of the p rob lem as formula ted  here ,  was 
obtained with ~ = 1. Foe(0, Fo k) = 2.443. 

For  compar ison,  in accordance  with note 4, a nea r -op t imum mode was se lected with a constant t em-  
pe ra tu re  r = 1.466. The init ial  and the boundary conditions r emain  a lmost  unchanged. With Foe(0, Fo k) 
= 2.443, the resu l t  was Foe ( l / 2 ,  Fo k) = 0.945, as  compared  with 1.250 in the optimum mode. 

We note that the exact  solution (8) to the heat conduction p rob lem at  X = 1/2 is  approximated by ex-  
p re s s ion  (9) adequately enough with r e spec t  to the sought boundary conditions. This, the e r r o r  in the 
d e s c r i b e d  example did not exceed  3% at  t empera tu re  levels  appropria te  for  the given problem. 

NOTA TION 

~5(X, Fo) = T(X, Fo) /To  
T 
T o 
X 

T 

l 
a 

Fo e = a r e / l  2 

r e 

E 
R 
Te 

is  the re la t ive  t empera tu re  at point X = x / l  at the instant of t ime Fo = ar /12 ;  
is the t empera tu re ,  ~ 
xs the initial  plate t empera tu re ;  
is  the space coordinate;  
is  the t ime coordinate;  
xs the thickness;  
is the thermal  diffusivity; 
is  the relat ive t empera tu re  at the plate surface;  
is the dimensionless  "equivalent t ime" ;  
is  the equivalent  t ime. 
is the activation ene rgy  of the vulcanizing react ion;  
is the universa l  gas constant;  
is  the r e fe rence  t empera tu re  (~ at  which p rocess ing  for  a length of time r e 

r e su l t s  in the same degree of vulcanizing as  p rocess ing  at t empera tu re  T for  
the length of t ime r .  
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